

Formation and Reactivity of the Os(IV)–Azidoimido Complex, PPN[Os^{IV}(bpy)(Cl)₃(N₄)]

My Hang V. Huynh,*,[‡] R. Thomas Baker,[§] Donald L. Jameson,[∥] Andrea Labouriau,[§] and Thomas J. Meyer^{*,†}

Contribution from The Associate Laboratory Director for Strategic Research, MS A127, and the Chemistry Division, MS J514, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Received September 20, 2001

In the chemistry of Os(VI)–nitrido complexes, a general reactivity is emerging based on formal N⁻ addition to a variety of nucleophiles,^{1–5} examples being CN^{-,6} RSH,⁷ R₂NH,⁸ PR₃,⁹ and SPR₃,¹⁰ eqs 1–5.

 $[Os^{VI}(tpy)(Cl)_2(N)]^+ + CN^- \rightarrow [Os^{IV}(tpy)(Cl)_2(NCN)] \quad (1)$

 $[Os^{VI}(tpy)(Cl)_2(N)]^+ + ArSH \rightarrow$ $[Os^{IV}(tpy)(Cl)_2(NS(H)(Ar)]^+ (2)$

$$[Os^{VI}(tpm)(Cl)_2(N)]^+ + R_2NH \rightarrow [Os^{IV}(tpm)(Cl)_2(N(H)R_2)]^+ (3)$$

$$[Os^{VI}(tpy/tpm)(Cl)_{2}(N)]^{+} + PR_{3} \rightarrow [Os^{IV}(tpy/tpm)(Cl)_{2}(NPR_{3})]$$
(4)

$$[Os^{VI}(tpy/tpm)(Cl)_{2}(N)]^{+} + SPR_{3} \rightarrow$$

$${}^{1}/{_{2}}[Os^{IV}(tpy/tpm)(Cl)_{2}(NPR_{3})]^{+} +$$

$${}^{1}/{_{2}}[Os^{II}(tpy/tpm)(Cl)_{2}(NS)]^{+} (5)$$

(tpy = 2, 2': 6', 2''-terpyridine,

\$ 71

tpm = tris(pyrazol-1-yl)methane)

We report here the novel observation that reaction between azide ion and the relatively electron-rich nitrido complex, $[Os^{VI}(bpy)-(Cl)_3(N)]$ ([1]) (bpy = 2,2'-bipyridine), results in the stable Os^{IV} azidoimido product, $[Os^{IV}(bpy)(Cl)_3(N_4)]^-$ ([2]⁻), which contains the first example of an unbridged N_4^{2-} ligand,¹¹ eq 6.

$$mer-[Os^{VI}(bpy)(CI)_{3}(N)] + N_{3}^{*} \xrightarrow{} mer-[(bpy)(CI)_{3}Os^{IV} = \bigwedge^{\bullet} N = N = N]$$

$$[1] \qquad [2]^{*} \xrightarrow{\bullet} N = N = N = N$$

$$(6)$$

Reaction between [1] and PPNN₃ in dry CH₃CN under N₂ at 60 °C for 3 h resulted in a color change from purple to dark brown with associated changes in the visible spectrum from $\lambda_{max} = 498$ nm to 486 and 452 nm. The brown solution was evaporated to dryness by rotary evaporation, and the crude product was purified

Table 1.	Selected Infrared Data (±2 cm	ղ−¹) for PPN-
[Os ^{IV} (bpy	()(Cl) ₃ (N ₄)] and Its ¹⁵ N-Labeled	Analogues in Nujol Mulls

[Os ^{IV} (bpy)(Cl) ₃ (N ₄)] ⁻ isotopic	$\nu_{\rm asym}({\rm N_3}^-)$	ν (Os–N _{α})	
[Os ^{IV-14} N ¹⁴ N ¹⁴ N ¹⁴ N] ⁻	[2] ^{- a}	2058	1092
$[Os^{IV} - {}^{15}N^{14}N^{14}N^{14}N]^{-}$	$[2^*]^{-b}$	2056	1074
$[Os^{IV} - {}^{14}N^{15}N^{14}N^{14}N]^-$ $[Os^{IV} - {}^{14}N^{14}N^{14}N^{15}N]^-$	$[2A^*]^{-c}$ $[2B^*]^{-c}$	2040	1090
$[Os^{IV} - {}^{15}N^{15}N^{14}N^{14}N]^{-}$ $[Os^{IV} - {}^{15}N^{14}N^{14}N^{15}N]^{-}$	$[2\mathbf{A}^{**}]^{-d}$ $[2\mathbf{B}^{**}]^{-d}$	2041	1073

^{*a*} Product from reaction between $[Os^{VI}(bpy)(Cl)_3(^{14}N)]$ and $^{14}N^{14}N^{1-4}N^{-5}$. ^{*b*} Product from reaction between $[Os^{VI}(bpy)(Cl)_3(^{15}N)]$ and $^{14}N^{14}N^{1-4}N^{-5}$. ^{*c*} Products from reaction between $[Os^{VI}(bpy)(Cl)_3(^{14}N)]$ and $^{15}N^{14}N^{14}N^{-5}$.

^d Products from reaction between [Os^{VI}(bpy)(Cl)₃(¹⁵N)] and ¹⁵N¹⁴N¹⁴N⁻.

by gradient column chromatography on silica gel with CH_3CN : $C_6H_5CH_3$ mixtures (from 1:1 to 5:1 (v/v) ratio) as the eluent, followed by recrystallization from tetrahydrofuran. The product was collected (32% yield) and fully characterized by cyclic voltammetry, elemental analysis, ¹H and ¹⁵N NMR, UV–vis, and infrared (Table 1) (IR) spectroscopies.¹²

Direct evidence for the formation of an Os(IV)-azidoimido product comes from ¹⁵N-labeling and IR measurements in Nujol mulls and ¹⁵N NMR in CD₃CN. As shown in Table 1, the asymmetric stretching vibration of the azido group, $\nu_{asym}(N_3^-)$, appears at 2057 \pm 2 cm⁻¹ in PPN[Os^{IV}(bpy)(Cl)₃(¹⁴N¹⁴N₃)] (PPN[**2**]) and PPN[Os^{IV}(bpy)(Cl)₃(¹⁵N¹⁴N₃)] (PPN[**2***])¹³ and at 2041 \pm 2 cm⁻¹ in mixtures of PPN[Os^{IV}(bpy)(Cl)₃(¹⁴N¹⁴N¹⁴N¹⁴N)] (PPN[**2A***]) and PPN[Os^{IV}(bpy)(Cl)₃(¹⁵N¹⁴N¹⁴N¹⁴N)] (PPN[**2B***]) or in mixtures of PPN[Os^{IV}(bpy)(Cl)₃(¹⁵N¹⁴N¹⁴N)] (PPN[**2A****]) and PPN[Os^{IV}(bpy)(Cl)₃(¹⁵N¹⁴N¹⁴N)] (PPN[**2A****]) and PPN[Os^{IV}(bpy)(Cl)₃(¹⁵N¹⁴N¹⁴N)] and at 2005 cm⁻¹ in PPN[¹⁵N¹⁴N¹⁴N]. From these data, it can be inferred that the N₃ unit is retained in [**2**]⁻.

In the same set of IR spectra, $\nu(Os^{-14}N)$ appears at 1091 \pm 2 cm⁻¹ in PPN[**2**], PPN[**2A***], and PPN[**2B***], and $\nu(Os^{-15}N)$ appears at 1073 \pm 2 cm⁻¹ in PPN[**2***], PPN[**2A****], and PPN[**2B****]. From these data, it can be concluded that the N-atom in the Os^{VI}=N precursor is retained in the Os^{IV}-N₄ product at N_{α}, the N-atom bound to Os.

The proposed structure for PPN[**2**] is further confirmed by ¹⁵N NMR spectrosopic data in CD₃CN for the highly labeled complexes, PPN[**2A**^{**}] and PPN[**2B**^{**}].¹⁴ The Os=¹⁵N resonance at 1187 ppm for [**1**^{*}] is shifted to 489 ppm (N_{α}) in PPN[**2B**^{**}]. The other resonance for PPN[**2B**^{**}] at 668 ppm can be assigned to N_{δ} of the ¹⁵N_{α}¹⁴N_{β}¹⁴N_{γ}¹⁵N_{δ}²⁻ ligand. Isotopomer PPN[**2A**^{**}] shows two doublet resonances at 489 and 730 ppm (¹*J*(¹⁵N-¹⁵N) = 6.5 Hz) due to N_{α} and N_{β}, respectively.¹⁵ The ¹⁵N-¹⁵N *one-bond* coupling constant of 6.5 Hz compares well with similar values for Os dinitrogen complexes, that is, ¹*J*(¹⁵N-¹⁵N) = 4.5 for *mer*-

^{*} Corresponding authors. E-mails: (T.J.M.) tjmeyer@lanl.gov; (M.H.V.H.) huynh@lanl.gov.

[†] Associate Laboratory Director for Strategic and Supporting Research, Los Alamos National Laboratory, MS A127, Los Alamos, NM 87545. Telephone: 505-667-8597. Fax: 505-667-5450.

[‡] Director-Funded Postdoctoral Fellow, Los Alamos National Laboratory, Chemistry Division, MS J514, Los Alamos, NM 87545. Telephone: 505-667-3968. Fax: 505-667-9905.

[§] Los Alamos National Laboratory, Chemistry Division, MS J514, Los Alamos, NM 87545.

Department of Chemistry, Gettysburg College, Gettysburg, PA 17325.

Table 2. Selected Infrared Data ($\pm 2 \text{ cm}^{-1}$) for [Os^{IV}(bpy)-(Cl)₃(N(OH)N₃)] and Their ¹⁵N-Labeled Analogues in Nujol Mulls

[Os ^{IV} (bpy)(Cl) ₃ (N(OH)N ₃) isotopic distribution]	$\nu_{\rm asym}({\rm N_3}^-)$	ν(Os–N _α)	ν(N _α -0)	ν(O–H)
$\frac{[Os^{IV}-{}^{14}N(OH){}^{14}N{}^{14}N{}^{14}N]}{[Os^{IV}-{}^{15}N(OH){}^{14}N{}^{14}N{}^{14}N]}\\[Os^{IV}-{}^{14}N(OH){}^{15}N{}^{14}N{}^{14}N]\\[Os^{IV}-{}^{14}N(OH){}^{14}N{}^{14}N{}^{15}N]\\[Os^{IV}-{}^{15}N(OH){}^{15}N{}^{14}N{}^{14}N]\\[Os^{IV}-{}^{15}N(OH){}^{15}N{}^{14}N{}^{14}N]\\[Os^{IV}-{}^{15}N(OH){}^{14}N{}^{14}N{}^{15}N]$	[6] ^a [6*] ^b [6A*] ^c [6B*] ^c [6A**] ^d [6B**] ^d	2058 2060 2046 2045	1092 1076 1091 1074	772 756 773 756	3404 3408 3407 3406

^{*a*} Product from reaction between O←NMe₃·3H₂O and PPN[Os^{IV}-(bpy)(Cl)₃(¹⁴N¹⁴N¹⁴N)]. ^{*b*} Product from reaction between O←NMe₃·3H₂O and PPN[Os^{IV}(bpy)(Cl)₃(¹⁵N¹⁴N¹⁴N¹⁴N)]. ^{*c*} Products from reaction between O←NMe₃·3H₂O and PPN[Os^{IV}(bpy)(Cl)₃(¹⁴N¹⁵N¹⁴N¹⁴N)] and PPN[Os^{IV}(bpy)(Cl)₃(¹⁴N¹⁴N¹⁴N)]. ^{*d*} Products from reaction between O←NMe₃·3H₂O and PPN[Os^{IV}(bpy)(Cl)₃(¹⁵N¹⁵N¹⁴N¹⁴N)] and PPN[Os^{IV}(bpy)(Cl)₃(¹⁵N¹⁴N¹⁴N¹⁵N)].

 $[Os^{II}(Br)_2({}^{15}N_2)(PMe_2Ph)_3]^{16}$ and ${}^{1}J({}^{15}N-{}^{15}N) = 4.0$ for *mer*- $[Os^{II}(Cl)_2({}^{15}N_2)(PMe_2Ph)_3]^{.17}$

Formulation of PPN[2] as a diamagnetic d⁴ Os(IV)-azidoimido complex containing the N42- ligand with retention of the mergeometry is consistent with its spectroscopic properties. In the ¹H NMR spectrum, the expected eight resonances of bpy appear from 8.05 to 9.22 ppm, similar to the pattern of resonances for the parent mer-[Os^{VI}(bpy)(Cl)₃(N)]. The visible spectrum in CH₃CN has a pattern of bands, $\lambda_{max} = 486$ and 452 nm, analogous to bands at 521 and 421 nm for the analogous Os(IV)-cyanoimido complex, [Os^{IV}(bpy)(Cl)₃(NCN)]^{-.6} Closely related reactions occur between $[Os^{VI}(Me_2bpy)(Cl)_3(N)]$ (Me_2bpy = 4,4'-dimethyl-2,2'-bipyridine), $[Os^{VI}(phen)(Cl)_3(N)]$ (phen = 1,10-phenanthroline), or $[Os^{VI} (Ph_2phen)(Cl)_3(N)$] $(Ph_2phen = 4,7-diphenyl-1,10-phenanthroline)$ and PPNN3 to give the corresponding Os(IV)-azidoimido products, $[Os^{IV}(L_2)(Cl)_3(N_4)]^-$ (L₂ = Me₂bpy = [**3**]⁻, phen = [**4**]⁻, and $Ph_2phen = [5]^-$). They were also isolated as PPN^+ salts and characterized by cyclic voltammetry, elemental analysis, and UV-visible and IR spectroscopies.¹²

We have begun to explore the reactivity of these novel complexes. For PPN[**2**] in 0.1 M TBAH/CH₃CN (TBAH = tetrabutylammonium hexafluorophosphate), chemically reversible waves appear in the cyclic voltammogram at $E_{1/2} = +1.40$, +0.88, and -0.82 V (versus SSCE) for the Os(VI/V), Os(V/IV), and Os(IV/III) couples, respectively. They compare with $E_{1/2} = +1.72$, +0.90, and -0.40 V for the same couples for PPN[Os^{IV}-(bpy)(Cl)₃(NCN)].⁶ In dry CH₃CN with added O \leftarrow NMe₃·3H₂O, a rapid color change occurs from dark to lighter brown. The product was isolated (68% yield) from the solution and characterized by elemental analysis and IR and ¹H NMR spectroscopies.¹² Its formulation as the Os(IV)-azidohydroxoamido complex, *mer*-[Os^{IV}(bpy)(Cl)₃(¹⁴N(OH)¹⁴N₃)] ([**6**]), in eq 7 is further supported by ¹⁵N-labeling. This appears to be the first example of the N(OH)N₃⁻ ligand.

mer-[Os^{IV}(bpy)(Cl)₃(NN₃)]⁻ + O
$$\leftarrow$$
NMe₃ + H₂O \rightarrow
[2]⁻
mer-[Os^{IV}(bpy)(Cl)₃(N(OH)N₃)] + NMe₃ + OH⁻ (7)
[6]

As shown in Table 2, in *mer*-[Os^{IV}(bpy)(Cl)₃(¹⁴N(OH)¹⁴N₃)] ([**6**]) and its ¹⁵N analogue, $[Os^{IV}(bpy)(Cl)_3(^{15}N(OH)^{14}N_3)]$ ([**6***]), $\nu_{asym}(N_3^{-})$ appears at 2059 ± 2 cm⁻¹. In mixtures of $[Os^{IV}(bpy)(Cl)_3(^{14}N-(OH)^{15}N^{14}N^{14}N)]$ ([**6A***]) and $[Os^{IV}(bpy)(Cl)_3(^{14}N(OH)^{14}N^{14}N^{15}N)]$ ([**6B***]) or of $[Os^{IV}(bpy)(Cl)_3(^{15}N(OH)^{15}N^{14}N^{14}N)]$ ([**6A****]) and $[Os^{IV}(bpy)(Cl)_3(^{15}N(OH)^{14}N^{14}N^{15}N)]$ ([**6B****]), $\nu_{asym}(N_3^{-})$ appears at 2045 \pm 2 cm⁻¹. As for [2]⁻, these observations are consistent with the retention of the N₃ structure in the N(OH)N₃⁻ ligand.

Reminiscent of $[2]^-$, it can be inferred on the basis of the IR data that the N-atom from Os^{VI}=N is retained, and that there is an N–O bond in [6]. ν (Os–N) shifts from 1091 ± 2 cm⁻¹ in [6] and the mixture of [6A*] and [6B*] to 1075 ± 2 cm⁻¹ in [6*] and the mixture of [6A**] and [6B**]. It is not a coupled ν (NNO) stretch as shown by its insensitivity to ¹⁵N substitution for ¹⁴N at the N atom β to Os in [6A*]–[6B*] and [6A**]–[6B**]. Similarly, ν (N–O) in [6] and the mixture of [6A*] and [6A**]–[6B**] and [6B*] shifts from 772 ± 2 cm⁻¹ to 756 ± 2 cm⁻¹ in [6*] and the mixture of [6A**] and [6B**]. A ν (O–H) stretch appears at 3406 ± 2 cm⁻¹ in all of the Os(IV)–azidohydroxoamido complexes.

Deprotonation of the coordinated $N(OH)N_3^-$ ligand in [6] to the bound $N(O)N_3^{2-}$ ligand results in an instability toward N_2 evolution. When [6] was redissolved in 3:1 (v/v) CH₃CN:H₂O, pH = 9–12 containing a NaOH/NaH₂PO₄–NaOH/Na₂HPO₄ buffer, a rapid reaction occurred with the effervescence of N_2 gas evolution. The resulting brown product is the corresponding Os(II)–dinitrogen oxide complex, $[Os^{II}(bpy)(Cl)_3(N_2O)]^-$ ([7]–), eq 8.

mer-[Os^{IV}(bpy)(Cl)₃(N(OH)N₃)] + OH⁻
$$\rightarrow$$

[6]
mer-[Os^{II}(bpy)(Cl)₃(N₂O)]⁻ + N₂ + H₂O (8)
[7]⁻

This reaction may occur by deprotonation and internal electron transfer, eq 9.

$$\begin{bmatrix} Os^{IV}(bpy)(CI)_{3}(N(OH)N_{3}) \end{bmatrix}^{*} OH^{*} \xrightarrow{^{-H_{2}O}} \begin{bmatrix} Os^{IV}(bpy)(CI)_{3}(N(O)N_{3}) \end{bmatrix}^{*} \longrightarrow$$

$$\begin{bmatrix} 6 \end{bmatrix}$$

$$\begin{bmatrix} O\\ (bpy)(CI)_{3}Os^{II} - N - NNN \end{bmatrix}^{*} \longrightarrow \begin{bmatrix} Os^{II}(bpy)(CI)_{3}(N_{2}O) \end{bmatrix}^{*} + N_{2} \qquad (9)$$

$$\begin{bmatrix} 7T \end{bmatrix}$$

The putative Os^{II} -N(O)N₃ intermediate is analogous to intermediates proposed in reactions between metal nitrosyls and azide ion, eq 10.¹⁸

$$cis-[\operatorname{Ru}^{II}(bpy)_{2}(NO)(Cl)]^{2+} + N_{3}^{-} \rightarrow \\ {\operatorname{Ru}^{II}(bpy)_{2}(N(O)N_{3})(Cl)}^{+} \xrightarrow{+CH_{3}CN} \\ cis-[\operatorname{Ru}^{II}(bpy)_{2}(NCCH_{3})(Cl)]^{+} + N_{2}O + N_{2} (10)$$

Complex $[7]^-$ was isolated (42% yield) as the PPN⁺ salt and characterized by elemental analysis, cyclic voltammetry, and IR (Table 3) and ¹H NMR spectroscopies.¹² It is the second example of a characterized N₂O transition-metal complex.¹⁹

In PPN[Os^{II}(bpy)(Cl)₃(¹⁴N¹⁴NO)] (PPN[**7**]), the pseudosymmetric (largely N–N) N₂O stretch appears at 1245 cm⁻¹ (ν_1), doubly degenerate bends appear at 536 and 533 cm⁻¹ (ν_2), and a pseudo-asymmetric (largely N–O) stretch appears at 2252 cm⁻¹ (ν_3), Table 3. ν_1 and ν_2 are shifted to lower energy upon coordination (gaseous N₂O: $\nu_1 = 1286$ and $\nu_2 = 589$ cm⁻¹),²⁰ but ν_3 is shifted to higher energy (gaseous N₂O: $\nu_3 = 2224$ cm⁻¹) as in [Ru^{II}(NH₃)₅(N₂O)]^{2+ 21} and for N₂O absorbed on alkali-halide films²² or on α -Cr₂O₃.²³

In the product of reaction 7 followed by 8 with $[Os^{VI}(bpy)-(Cl)_3(^{15}N)]$ as the starting complex and $^{14}N_3^-$, $\nu_1 = 1238$ and $\nu_3 = 2221$ cm⁻¹. The ^{15}N isotope effects on ν_1 (7 cm⁻¹) and

Table 3. Selected Infrared Data (±2 cm⁻¹) for PPN-[Os^{II}(bpy)(Cl)₃(N₂O)] and Its ¹⁵N-Labeled Analogues in Nujol Mulls

[Os ^{II} (bpy)(CI) ₃ (N ₂ O)] ⁻ isotopic distribution		N ₂ O bands			
		$\nu_2{}^b$	ν_{3}^{c} (largely N–O)		
[7] ^{- d}	1245	536, 533	2252		
[7 *] ⁻ e	1238	532, 526	2221		
[7] ⁻ f [7 A*] ⁻ f	1244, 1237	535, 532	2252		
[7 *] ⁻ ^g [7 **] ⁻ ^g	1237, 1233	532, 525	2221, 2212		
	$[7]^{-d}$ $[7^*]^{-e}$ $[7^*]^{-f}$ $[7^*]^{-f}$ $[7^*]^{-g}$ $[7^*]^{-g}$		$ \begin{array}{c} \text{N}_{2}\text{O} \text{ J}_{1}^{-d} & \text{N}_{2}\text{O} \text{ bands} \\ \hline \nu_{1}{}^{a} \left(\text{largely N-N} \right) & \nu_{2}{}^{b} \\ \hline \left[\begin{array}{c} \textbf{7} \right]^{-d} & 1245 & 536, 533 \\ \textbf{7}^{*} \right]^{-e} & 1238 & 532, 526 \\ \hline \left[\textbf{7} \right]^{-f} & 1244, 1237 & 535, 532 \\ \hline \left[\textbf{7}^{*} \right]^{-g} & 1237, 1233 & 532, 525 \\ \hline \end{array} $		

^a Pseudosymmetric stretch. ^b Doubly degenerate bend. ^c Pseudoasymmetric stretch. ^d Product obtained from [Os^{IV}(bpy)(Cl)₃(¹⁴N(OH)¹⁴N¹⁴N)] in 3:1 (v/v) CH₃CN:H₂O at pH = 10. Product obtained from $[Os^{IV}(bpy)(Cl)_3({}^{15}N(OH){}^{14}N{}^{14}N)]$ in 3:1 (v/v) CH₃CN:H₂O at pH = 10. ^{*f*} Products obtained from $[Os^{IV}(bpy)(Cl)_3({}^{14}N(OH){}^{14}N{}^{14}N{}^{15}N)]$ and $[Os^{IV}(bpy)(Cl)_3({}^{14}N(OH){}^{15}N{}^{14}N{}^{14}N)]$ in 3:1 (v/v) CH₃CN:H₂O at pH = 10. ^g Products obtained from $[Os^{IV}(bpy)(Cl)_3({}^{15}N(OH){}^{14}N{}^{14}N{}^{15}N)]$ and $[Os^{IV}(bpy)(Cl)_3({}^{15}N(OH){}^{15}N{}^{14}N{}^{14}N)]$ in 3:1 (v/v) CH₃CN:H₂O at pH = 10.

 v_3 (31 cm⁻¹) are consistent with the isotopic distribution PPN-[Os^{II}(bpy)(Cl)₃(¹⁴N¹⁵NO)] in the product (PPN[**7***]). This conclusion is also in agreement with: (1) $\nu_1(^{14}N^{14}NO)$ at 1244 cm⁻¹, $\nu_1(^{15}N^{14}NO)$ at 1237 cm⁻¹, and ν_3 at 2252 cm⁻¹ in the mixture of PPN[7] and PPN[Os^{II}(bpv)(Cl)₃($^{15}N^{14}NO$)] ([7A*]⁻) in Table 3 and (2) $\nu_1({}^{14}N{}^{15}NO) = 1237 \text{ cm}^{-1}$, $\nu_1({}^{15}N{}^{15}NO) = 1233 \text{ cm}^{-1}$, $\nu_3({}^{14}N{}^{15}NO) = 2221 \text{ cm}^{-1}$, and $\nu_3({}^{15}N{}^{15}NO) = 2212 \text{ cm}^{-1}$. In the mixture of PPN[7*] and PPN[OsII(bpy)(Cl)₃($^{15}N^{15}NO$)] (PPN[7**]), the ${}^{15}N$ shifts of ν_2 in Table 3 are similar to those found with ${}^{15}N$ labeling in $[Ru^{II}(NH_3)_5(N_2O)]^{2+}$ formed by Cr^{2+} reduction of $[Ru^{III}(NH_3)_5(CI)]Cl_2$ in the presence of N₂O (¹⁴N¹⁴NO, ¹⁴N¹⁵NO, and 15N14NO).19a

The ¹⁵N-labeling results in Table 3 are consistent with coordination through the terminal nitrogen of N2O with the original N-atom from $Os^{VI} \equiv N$ appearing at the β -position in $Os^{II} - N_{\alpha}N_{\beta}O$. Given the mechanism implied in eq 9, formation of the final product must entail Os–N linkage isomerization from the α to the β position in the N₂ extrusion reaction of the N(O)N₃²⁻ ligand. A related observation has been made in the reaction between [RuII-(NH₃)₅(¹⁵NO)]³⁺ and hydroxylamine (¹⁴NH₂OH) which forms [Ru^{II}(NH₃)₅(¹⁴N¹⁵NO)]²⁺ and H₂O.²¹

The series of transformations starting in eq 6 with the formation of mer- $[Os^{IV}(bpy)(Cl)_3(NN_3)]^-$ followed by hydroxylation to form $mer-[Os^{IV}(bpy)(Cl)_3(N(OH)N_3)]$ and then deprotonation and extrusion of N₂ to give $[Os^{II}(bpy)(Cl)_3(N_2O)]^-$ is a remarkable sequence of reactions in the chemistry of coordinated ligands. It involves two new examples of coordinated ligands (azidoimido N_4^{2-} and azidohydroxoamido N(OH)N₃⁻) and a reaction sequence which allows for the stepwise addition of N and O atoms to a nitrido ligand.

Acknowledgments are made to the Laboratory Directed Research and Development Program for support of this research. M.H.V.H. gratefully acknowledges postdoctoral fellowship support

from the Director's Office of Los Alamos National Laboratory. Los Alamos National Laboratory is operated by the University of California for the U.S. Department of Energy under Contract W-7405-ENG-36.

Supporting Information Available: Text containing characterizations is included (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) (a) Pawson, D.; Griffith, W. P. J. Chem. Soc., Dalton Trans. 1975, 417–423. (b) Demadis, K. D.; Bakir, M.; Klesczewski, B. G.; Williams,
 D. S.; White, P. S.; Meyer, T. J. *Inorg. Chim. Acta* 1998, 270, 511–526. (2) Williams, D. S.; Meyer, T. J.; White, P. S. J. Am. Chem. Soc. 1995, 117,
- 823 824(3) Crevier, T. J.; Mayer, J. M. J. Am. Chem. Soc. 1998, 120, 5595-5596.
- (4) Crevier, T. J.; Mayer, J. M. Angew. Chem., Int. Ed. 1998, 37 (13), 1891-1893.
- (5) Brown, S. N. *Inorg. Chem.* 2000, *39*, 378–381.
 (6) Huynh, M. H. V.; White, P. S.; Carter, C. A. G.; Meyer, T. J. *Angew.* Chem. Int. Ed. 2001, 40 (16), 3037-3039.
- (a) Huynh, M. H. V.; White, P. S.; Meyer, T. J. Angew. Chem., Int. Ed. **2000**, 39 (22), 4101–4104. (b) Huynh, M. H. V.; White, P. S.; Meyer, T. J. J. Am. Chem. Soc. **2001**, 123, 9170–9171.
- (8) Huynh, M. H. V.; El-Samanody, E.-S.; Demadis, K. D.; White, P. S.; Meyer, T. J. J. Am. Chem. Soc. 1999, 121, 1403-1404. (9) Bakir, M.; White, P. S.; Dovletoglou, A.; Meyer, T. J. Inorg. Chem. 1991,
- 30, 2835-2836. (10) Huynh, M. H. V.; White, P. S.; Meyer, T. J. Inorg. Chem. 2000, 39, 2825-
- 2830.
- (11) For an example of a bridging N_4 ligand, see: Mass, V. W.; Kujanek, R.; Baum, G.; Dehnicke, K. Angew. Chem., Int. Ed. Engl. 1984, 23 (2), 149 - 149
- (12) Detailed characterization data are provided in the Supporting Information Materials
- (13) Prepared by the reaction between mer- $[Os^{VI}(bpy)(Cl)_3(^{15}N)]$ ([1*])⁶ and PPN¹⁴N₃
- (14) (a) 30 MHz $^{15}\!N$ NMR measurements were conducted by using a Varian Unity series spectrometer. All ¹⁵N chemical shifts are reported relative to the resonance for a saturated solution of $^{15}NH_4Cl$ in D₂O at + 353.0 ppm, referred to a neat nitromethane external standard. (b) Witanowski, M.; Stefaniak, L. In Annual reports on NMR Spectrosopy: Nitrogen NMR Spectroscopy; Webb, G. A., Ed.; Academic Press: New York, 1983; Vol. 15, p 138.
- (15) The ${}^{15}N\ NMR$ resonance for mono-labeled azide, ${}^{15}N\ ^{14}N\ ^{14}N^{-},$ is at 431 ppm.
- (16) Dilworth, J. R.; Donovanmtunzi, S.; Kan, C. T.; Richards, R. L.; Mason, J. Inorg. Chim. Acta, Lett. 1981, 53, L161-L162.
- (17) Donovanmtunzi, S.; Richards, R. L.; Mason, J. J. Chem. Soc., Dalton Trans. 1984, 469-474.
- (18) (a) Miller, F. J.; Meyer, T. J. J. Am. Chem. Soc. 1971, 93, 1294.
 (b) Callahan, R. W.; Meyer, T. J. Inorg. Chem. 1977, 16, 574-581. (c) Bottomley, F.; Mukaida, M. J. Chem. Soc., Dalton Trans. 1982, 10, 1933-1937
- (19) (a) Armor, J. N.; Taube, H. J. Am. Chem. Soc. 1970, 92, 2560-2562. (b) Armor, J. N.; Taube, H. J. Am. Chem. Soc. 1969, 91, 6874–6876.
 (c) Richardson, W. S.; Wilson, E. B. J. Chem. Phys. 1950, 18, 694–696.
 (d) Pell, S.; Mann, R. H.; Taube, H.; Armor, J. N. Inorg. Chem. 1974, 13, 479-480. (e) Pamplin, C. B.; Ma, E. S. F.; Safari, N.; Rettig, S. J.; James, B. R. J. Am. Chem. Soc. 2001, 123, 8596-8597.
- (20) (a) Diamantis, A. A.; Sparrow, G. J. J. Colloid Interface Sci. 1974, 47 455-458. (b) Begun, G. M.; Fletcher, W. H. J. Chem. Phys. 1958, 28, 414.
- (21) Bottomley, F.; Crawford, J. R. J. Am. Chem. Soc. 1972, 94, 9092–9095.
 (22) Kozirovski, Y.; Folman, M. Trans Faraday Soc. 1969, 65, 244.
- (23) Zecchina, A.; Cerruti, L.; Borello, E. J. Catal. 1972, 25, 55.

JA0122086